已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.

问题描述:

已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.

证明:用反证法.如果a,b不都能被3整除,那么有如下两种情况:(1)a,b两数中恰有一个能被3整除,不妨设3|a,3不整除b.令a=3m,b=3n±1(m,n都是整数),于是a2+b2=9m2+9n2±6n+1=3(3m2+3n2±2n)+1,不是3的倍...
答案解析:此题利用一个数被3除有三种情况:被3整除,被3除余1,被3除余2;由此表示出a,b,再分情况代入即可解答.
考试点:数的整除性;反证法.
知识点:此题主要利用被一个数除,出现几种不同的余数,逐一计算,逐一讨论,找出问题的答案.