已知a=2004的平方+2004的平方乘2005的平方+2005的平方,试说明a是一个完全平方数.
问题描述:
已知a=2004的平方+2004的平方乘2005的平方+2005的平方,试说明a是一个完全平方数.
答
a=2004^2+2004^2*2005^2+2005^2 =2004^2+2004^2*2005^2+(2004+1)^2 =2004^2*2005^2+2004^2+2004^2+2*2004^2+1 =2004^2*2005^2+2*2004*(2004+1)+1 =2004^2*2005^2+2*2004*2005+1 =(2004*2005+1)^2所以a是一个完全平方...