在四边形ABCD中,DF垂直AC于F,BE垂直AC于E,M.N分别是AB.DC中点,求证:四边形MENF是平行四边形
问题描述:
在四边形ABCD中,DF垂直AC于F,BE垂直AC于E,M.N分别是AB.DC中点,求证:四边形MENF是平行四边形
答
AD=BCAC=CACD=AB∴△ACD全等于△CAB∴DF=BE又DF、BE为AC边上的高∴△DFC全等于△BEA∴FN=EM=DC/2=AB/2(直角三角形斜边上的中线等于斜边的一半)在Rt△DFC中,NF=NC∴∠NFC=∠NCA同理,∠MEA=∠MAC在平行四边形ABCD中,...