f(x)=e^-x,则∫f'(lnx)/xdx等于?,

问题描述:

f(x)=e^-x,则∫f'(lnx)/xdx等于?,

f‘(lnx)= -e^-lnx=-1/x
带入不定积分,于是有∫-1/(x*x)dx=1/x +C

f '(x)=-e^(-x)
所以f '(lnx)=-e^(-lnx)=-1/[e^(lnx)]=-1/x
故∫f'(lnx)/xdx
=∫-1/x²dx
=1/x +C