已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).
问题描述:
已知an-bm≠0,a≠0,ax2+bx+c=0,mx2+nx+p=0,求证:(cm-ap)2=(bp-cn)(an-bm).
答
证明:∵an-bm≠0
∴方程ax2+bx+c=0和方程mx2+nx+p=0有相等的根.
方程ax2+bx+c=0可化为x2+
x+b a
=0 ①c a
方程mx2+nx+p=0可化为x2+
x+n m
=0 ②p m
把方程①-②可得:(
-b a
)x+(n m
-c a
)=0p m
解方程得:
x+bm−an am
=0cm−ap am
(bm-an)x+(cm-ap)=0
x=
ap−cm bm−an
把x=
代入方程ax2+bx+c=0ap−cm bm−an
得:a(
)2+b(ap−cm bm−an
)+c=0ap−cm bm−an
a(ap-cm)2+b(ap-cm)(bm-an)+c(bm-an)2=0
a(ap-cm)2+(bm-an)(abp-bcm+bcm-can)=0
a(ap-cm)2+a(bm-an)(bp-cn)=0
∵a≠0,
∴两边同时除以a得到:(ap-cm)2+(bm-an)(bp-cn)=0
故(ap-cm)2=(bp-cn)(an-bm).