已知二次函数 y=2x² -mx-m²

问题描述:

已知二次函数 y=2x² -mx-m²
1、求证对于任意实数m改二次函数图像与x轴恒有交点
2、若该二次函数图象与x轴有两个公共点A,B,且A点坐标为(1,0),求B点坐标.

1、
判别式=m²+8m²=9m²≥0
判别式大于等于0,所以图像与x轴恒有交点
2、
过(1,0)
所以0=2-m-m²
m²+m-2=0
(m-1)(m+2)=0
m=1,m=-2
m=1,y=2x²-x-1=(2x+1)(x-1),x=-1/2
m=-2,y=2x²+2x-4=2(x+2)(x-1),x=-2
所以B(-1/2,0)或(-2,0)