高一数学几道函数求值域题!y=(2sinθ-1)/(1-sinθ),y=(3^x)/(1+3^x),y=(2sinθ-1)/(1+cosθ)好像是根据有界法.我们没学过啊……
问题描述:
高一数学几道函数求值域题!
y=(2sinθ-1)/(1-sinθ),
y=(3^x)/(1+3^x),
y=(2sinθ-1)/(1+cosθ)
好像是根据有界法.我们没学过啊……
答
1.
y=(2sinθ-1)/(1-sinθ)
=[(2sinθ-2)+1]/(1-sinθ)
=[-2(1-sinθ)+1]/(1-sinθ)
=-2+1/[1-sinθ]
由于:sinθ属于[-1,1]
则:(1-sinθ)属于[0,2]
则:1/(1-sinθ)属于[1/2,正无穷)
则:
y=-2+1/[1-sinθ]属于[-3/2,正无穷)
2.
y=3^x/(1+3^x)
=[(3^x+1)-1]/(3^x+1)
=1-1/(3^x+1)
由于:3^x+1属于(1,正无穷)
则:1/(3^x+1)属于(0,1)
则:
y=1-1/(3^x+1)属于(0,1)
3.
y=(2sinθ-1)/(1+cosθ)
=[4sin(θ/2)cos(θ/2)-1]/[1+2cos^2(θ/2)-1]
=[4sin(θ/2)cos(θ/2)-sin^2(θ/2)-cos^2(θ/2)]
/[2cos^2(θ/2)]
=2tan(θ/2)-(1/2)tan^2(θ/2)-(1/2)
=-(1/2)[tan(θ/2)-2]^2+3/2
则:
Y属于(负无穷,3/2]