若x2+xy-2y2=0,则x2+3xy+y2 x2+y2=_.

问题描述:

若x2+xy-2y2=0,则

x2+3xy+y2 
x2+y2
=______.

x2+3xy+y2 
x2+y2
有意义,可知y与x不能同时为0.
不妨设y≠0,由x2+xy-2y2=0,化为(x+2y)(x-y)=0,解得x=y,或x=-2y.
把x=y代入,可得
x2+3xy+y2 
x2+y2
=
5y2
2y2
=
5
2

把x=-2y代入,可得
x2+3xy+y2 
x2+y2
=
4y2.−6y2+y2
4y2+y2
=-
1
5

故答案为:
5
2
1
5