如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2. (1)求A、B两点的坐标及直线AC的函数表达式; (2)P是线段AC上的一个动点,过P
如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.
(1)令y=0,解得x1=-1或x2=3
∴A(-1,0)B(3,0)
将C点的横坐标x=2代入y=x2-2x-3得y=-3
∴C(2,-3)
∴直线AC的函数解析式是y=-x-1;
(2)设P点的横坐标为x(-1≤x≤2)
则P、E的坐标分别为:P(x,-x-1)
E(x,x2-2x-3)
∵P点在E点的上方,PE=(-x-1)-(x2-2x-3)=-x2+x+2=-(x-
)2+1 2
,9 4
∴当x=
时,PE的最大值=1 2
;9 4
(3)存在4个这样的点F,分别是F1(1,0),F2(-3,0),F3(4+
,0),F4(4-
7
,0).
7
①如图,连接C与抛物线和y轴的交点,那么CG∥x轴,此时AF=CG=2,因此F点的坐标是(-3,0);
②如图,AF=CG=2,A点的坐标为(-1,0),因此F点的坐标为(1,0);
③如图,此时C,G两点的纵坐标关于x轴对称,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1+
,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为y=-x+h,将G点代入后可得出直线的解析式为y=-x+4+
7
.因此直线GF与x轴的交点F的坐标为(4+
7
,0);
7
④如图,同③可求出F的坐标为(4-
,0).
7
综合四种情况可得出,存在4个符合条件的F点.