求f(t)=∫(上下限1和0)=│x-t│dt在0≤t≤1的最大值和最小值答案是f(0)=f(1)=1/2是最大值,f(1/2)=1/4是最小值

问题描述:

求f(t)=∫(上下限1和0)=│x-t│dt在0≤t≤1的最大值和最小值
答案是f(0)=f(1)=1/2是最大值,f(1/2)=1/4是最小值

兄弟,你后面所给的范围应该是X的范围吧

ƒ(t) = ∫(0→1) |x - t| dx
= ∫(0→t) |x - t| dx + ∫(t→1) |x - t| dx
= ∫(0→t) (t - x) dx + ∫(t→1) (x - t) dx
= t² - t + 1/2
= (t - 1/2)² + 1/4、这里也可以用导数求法
最小值为ƒ(1/2) = 1/4
ƒ(0) = ƒ(1) = 1/2
最大值为1/2
—————————————————————————————
首先分析被积函数g(x) = |x - t|,是个分段函数,把t当是常数
当x∈[0,t]时,g(x) 当x∈[t,1]时,g(x) > 0,所以|x - t| = x - t
积分化简后就能找到ƒ(t)的表达式
由于ƒ(t)是二次函数,所以可以化为完全平方式来找得最大/最小值
如果是三次或以上的函数,建议用导数法寻找极大/极小值
令ƒ'(t) = 0找得极值t = t₁、t = t₂
ƒ''(t₁) > 0,取得极小值ƒ(t₁)
ƒ''(t₂) 然后代入端点值ƒ(0)、ƒ(1)与极值比较大小关系:
当ƒ(1) > ƒ(t₂)、则ƒ(1)为最大值
当ƒ(1) 当ƒ(0) 当ƒ(0) > ƒ(t₁)、则ƒ(t₁)为最小值
有时候极小值比极大值还大 或者 极大值比极小值还小,这点自行留意.