已知二次函数y=a(x+m)²+k的图像的形状和大小与抛物线y=-1/2(x-4)²相同,

问题描述:

已知二次函数y=a(x+m)²+k的图像的形状和大小与抛物线y=-1/2(x-4)²相同,
并且图像的顶点恰好是直线y=3/2x-4与y= -2x的交点,求这个二次函数的解析式

解方程组:
y= 3/2 x-4
y=-2x
得到:x=8/7
y=-16/7
∴所求抛物线的顶点坐标为(8/7,-16/7)
∴m=-8/7 ,k=-16/7
∵所求抛物线的形状、大小 ,与y=-1/2(x-4)²相同
∴IaI=I-1/2I
∴a=±1/2
∴所求抛物线的解析式为:
y=1/2(x - 8/7)² - 16/7 或 y=-1/2 (x - 8./7)² - 16/7
【很高兴为你解决以上问题,希望对你的学习有所帮助!】≤、≥ ∠