ab/(a+b)=1 bc/(b+c)=1/2 ac/(a+c)=1/3 求abc/(a+b+c)

问题描述:

ab/(a+b)=1 bc/(b+c)=1/2 ac/(a+c)=1/3 求abc/(a+b+c)

答:ab/(a+b)=1,a+b=ab
bc/(b+c)=1/2,b+c=2bc
ac/(a+c)=1/3,a+c=3ac
三式相加:
2(a+b+c)=ab+2bc+3ac
=a(b+c)+2(a+b)c
=2abc+2abc
=4abc
所以:
a+b+c=2abc
所以:abc/(a+b+c)=1/2=ab+2bc+3ac=a(b+c)+2(a+b)c??咋么变得??把3ac拆开成2ac+ac=a(b+c)+2(a+b)c=2abc+2abc呢么这里呢??把最上面得出来的:b+c=2bca+b=ab代入进去啊