定义在R上的偶函数f(x),满足f(x+1)=-f(x),且 -1 0的闭区间递增 比较f(2)f(3)f(根号2)的大小1lou nicuole
问题描述:
定义在R上的偶函数f(x),满足f(x+1)=-f(x),且 -1 0的闭区间递增 比较f(2)f(3)f(根号2)的大小
1lou nicuole
答
因为在R上是偶函数,所以f(x)=f(-x)
因为在【-1 ,0】上是递增,
所以在【0 ,1】上是递减
且f(x+1)=-f(x)=-f(-x)
所以:F(2)=-F(1)=F(0)
F(3)=-F(2)=F(1)
F(根号2)=-F(根号2-1)
因为 (根号2-1)比1小,比0大
所以 F(3)> F(根号2) > F(2)
答
f(x+1)=-f(x)
令x+1为x:
f(x+1+1)=-f(x+1)
即f(x+2)=f(x)
所以,f(2)=f(2+0)=f(0)
f(3)=f(2+1)=f(1)=f(-1+2)=f(-1)
f(根号2)=f(根号2-2)
又在[-1,0]上是增函数,所以有:
f(-1)