数列{an}中,a1=1,an=2Snˆ2/(2Sn-1)(n大于等于2) 1.证明{1∕Sn}是等差数列 2.求数列{an}的通项公式

问题描述:

数列{an}中,a1=1,an=2Snˆ2/(2Sn-1)(n大于等于2) 1.证明{1∕Sn}是等差数列 2.求数列{an}的通项公式

1、当n≥2时,根据题意有a(n)=S(n)-S(n-1)=2S(n)²/[2S(n)-1]即2S(n)²-2S(n)S(n-1)-S(n)+S(n-1)=2S(n)²2S(n)S(n-1)=S(n-1)-S(n)两边同除以S(n)S(n-1),得2=1/S(n)-1/S(n-1),n≥2可见,{1/S(n)}是以 1/S(1...