求过A(-2,1),而且与P(-1,2),Q(3,0)两点距离相等的直线方程设所求直线方程为y-1=k(x+2)整理得:kx-y+2k+1=0根据两点P(-1,2),Q(3,0)到直线距离相等,可得:|-k-2+2k+1|/√(k²+1)=|3k+2k+1|/√(k²+1)|k-1|=|5k+1|k-1=5k+1或k-1=-5k-1k=-1/2或k=0所求直线方程为:y=0或x+2y=0[【|k-1|=|5k+1|k-1=5k+1或k-1=-5k-1】这一步是怎么得出?]
问题描述:
求过A(-2,1),而且与P(-1,2),Q(3,0)两点距离相等的直线方程
设所求直线方程为y-1=k(x+2)
整理得:kx-y+2k+1=0根据两点P(-1,2),Q(3,0)到直线距离相等,可得:|-k-2+2k+1|/√(k²+1)=|3k+2k+1|/√(k²+1)|k-1|=|5k+1|k-1=5k+1或k-1=-5k-1k=-1/2或k=0所求直线方程为:y=0或x+2y=0
[【|k-1|=|5k+1|k-1=5k+1或k-1=-5k-1】这一步是怎么得出?]
答
求过A(-2,1),而且与P(-1,2),Q(3,0)两点距...
答
(1)
y=1
(2)
k(PQ)=-1/2
y-1=(-1/2)*(x+2)
x+2y=0
(3)
y-1=k(x+2)
kx-y+1+2k=0
|-k-2+1+2k|=|3k-0+1+2k|
|k-1|=|5k+1|
k-1=±(5k+1)(这是去绝对值符号呀,这么简单)
k=-1/2,0
y=1
x+2y=0