已知f(x)=1/1+x.各项均为正数的数列{an}满足a1=1,an+2=f(an).若a2010=a2012,则a20+a11的值是?

问题描述:

已知f(x)=1/1+x.各项均为正数的数列{an}满足a1=1,an+2=f(an).若a2010=a2012,则a20+a11的值是?

当n为奇数时,由递推关系得:
a3=1/2,a5=2/3,a7=3/5,a9=5/8,a11=8/13
又a2010=a2012=1/(1+a2010)
当n为偶数时,
a2=a2010=a2012
其值为方程x1/(1+x)
即x^2+x-1=0
∴x=(-1±根号5)/2
又数列为正数数列,
∴a20=(-1+根号5)/2
∴a20+a11=(13跟号5+3)/26