线性代数的问题,设矩阵A的特征多项式为f(λ),则f(A)=0这个定理这么证明为什么不对?f(λ)=|A-λE|所以f(A)=|A-AE|=0

问题描述:

线性代数的问题,设矩阵A的特征多项式为f(λ),则f(A)=0
这个定理这么证明为什么不对?
f(λ)=|A-λE|
所以f(A)=|A-AE|=0