直线l经过点p(5,5),且和圆c:x^2+Y^2=25相交,截得弦长为4根号5求l的方程

问题描述:

直线l经过点p(5,5),且和圆c:x^2+Y^2=25相交,截得弦长为4根号5求l的方程

圆c:x^2+Y^2=25的半径是r=5
相交,截得弦长为4根号5,根据"勾股定理"得圆心到直线L的距离是:d^2=r^2-(2 根号5)^2=25-20=5
d=根号5.
设直线方程是y-5=k(x-5)
即:kx-y+5-5k=0
d=|5-5k|/根号(k^2+1)=根号5
(5-5k)^2=(k^2+1)*5
25-50k+25k^2=5k^2+5
20k^2-50k+20=0
4k^2-10k+4=0
(4k-2)(k-2)=0
k=1/2或k=2
即方程是:2x-y-5=0或1/2x-y+5/2=0