设n阶矩阵A的各行元素之和均为0,且A的秩为n-1,则齐次线性方程组的通解?网上搜了,但是我还是不懂为什么各行元素均为0,得出11111是它的通解,而不是其他数字好象有点理解了,我主要还是不明白通解1111.1是怎么算出来的
问题描述:
设n阶矩阵A的各行元素之和均为0,且A的秩为n-1,则齐次线性方程组的通解?网上搜了,但是我还是不懂为什么各行元素均为0,得出11111是它的通解,而不是其他数字
好象有点理解了,我主要还是不明白通解1111.1是怎么算出来的
答
A的秩为n-1, 说明 AX=0 的基础解系含n-r(A)=1个解向量.
A的各行元素之和均为0, 说明 A(1,1,...,1)^T = (0,0,...,)^T = 0
即 (1,1,...,1)^T 是 AX=0 的非零解, 故是AX=0的基础解系
所以通解为 k(1,1,...,1)^T .
注: 事实上, 其它任一非零数字都可以, 只是"A的各行元素之和"给人的第一感觉就是直接加起来, 即都乘1加起来.
设A=
1 -1 0
2 1 -3
-5 3 2
你用这个矩阵乘 (1,1,1)^T 试试, 看看是否等于0.