已知cosx=-根号3/2,求角x,x属于[0,2派)

问题描述:

已知cosx=-根号3/2,求角x,x属于[0,2派)

已知cosx=-√3/2,求角x,x属于[0,2π)。
设k=0,1,2,……,则cosx=sin(2kπ+π/2-x)=sin[(4k+1)π/2-x]
=-1×√3/2±0×1/2
=sin(3π/2)cos(π/6)±cos(3π/2)sin(π/6)=sin(3π/2±π/6),
(4k+1)π/2-x=3π/2±π/6,x=(4k+1)π/2-(3π/2±π/6)。因为x∈[0,2π],所以k取1,x=π±π/6。

cosxcosx=√3/2,x=π/6
π-π/6=5π/6=x1
π/6+π=7π/6=x2