已知函数f(x)=根号(x^2+1)-ax,a>0(1)若2f(x)=f(-1).求a的值 (2)证明,当且仅当a≥1时,函数f(x)在区间【0,正无穷】上为单调函数
问题描述:
已知函数f(x)=根号(x^2+1)-ax,a>0
(1)若2f(x)=f(-1).求a的值 (2)证明,当且仅当a≥1时,函数f(x)在区间【0,正无穷】上为单调函数
答
证明:设x1>x2≥0,则f(x1)-f(x2)=√(x1^2+1)-ax1-√(x^2+1)+ax2=(x1^2-x2^2)/[√(x1^12+1)+√(x2^2+1)]-a(x1-x2)=(x1-x2){x1+x2-a[√(x1^2+1)+√(x2^2+1)]}/[√(x1^2+1)+√(x2^2+1)]又x1>x2≥0,a≥1,即x1-x2>0,x1...