一道高数数列极限证明题证明如下命题:lim┬(n→∞)x_n=a的充要条件为对任一 ε>0,区间(a-ε,a+ε)外最多只有有限多项Xn.

问题描述:

一道高数数列极限证明题
证明如下命题:lim┬(n→∞)x_n=a的充要条件为对任一 ε>0,区间(a-ε,a+ε)外最多只有有限多项Xn.

根据极限定义,对于任意给定的e,存在N(e)使得
a-e 所以,在这个区间之外的x_n不会超过N(e)项得证

lim(n→∞)x(n) = a对任一 ε>0,存在 N∈Z+,当n>N时,有 |x(n)-a| 0,存在 N∈Z+,当n>N时,有 x(n) ∈ (a-ε,a+ε)对任一 ε>0,存在 N∈Z+,至多只有 n = 1,2,…,N 不满足 x(n) ∈ (a-ε,a+ε)对任一 ε>0,区间 (a-ε,a+...