已知g(x)=-x^2-3x,f(x)是二次函数,f(x)+g(x)是奇函数已知g(x)=-x^2-3x,f(x)是二次函数,f(x)+g(x)是奇函数,且当x∈[-1,2]时,f(x)的最小值为1,求f(x)的表达式
问题描述:
已知g(x)=-x^2-3x,f(x)是二次函数,f(x)+g(x)是奇函数
已知g(x)=-x^2-3x,f(x)是二次函数,f(x)+g(x)是奇函数,且当x∈[-1,2]时,f(x)的最小值为1,求f(x)的表达式
答
设f(x)=ax^2+bx+c
则f(x)+g(x)=(a+1)x^2+(b-3)x+c
因 f(x)+g(x)为奇函数,所以
f(-x)+g(-x)=-f(x)-g(x)
即
(a+1)x^2-(b-3)x+c==-(a+1)x^2-(b-3)x-c
因两式恒等,知(a+1)=-(a+1),c=-c
得a=-1.c=0
即f(x)=-x^2+bx,抛物线开口朝下,
当x=-b/2a,时,取得最小值1.代入x=b/2得
b^2=4
即b=2或b=-2
此时对称轴-b/2a分别为1和-1均在[-1,1]内.
所以f(x)=-x^2+2x或f(x)=-x^2-2x
答
f(x)=ax^2+bx+c G(x)=f(x)+g(x)=(a+1)x^2+(b-3)x+c G(x)是奇函数 G(-x)=-G(x) (a-1)(-x)^2+(b-3)(-x)+c=-(a-1)x^2-(b-3)x-c 2(a-1)x^2+2c=0 a-1=0 2c=0 a=1 c=0 f(x)=x^2+bx f(x)=(x+b/2)^2-b^2/4当x>=-b/2时 是增...