若数列{an}满足:a(n+1)=1/2an-3,a1=1,且liman存在,则liman=_____【括号内为下标】

问题描述:

若数列{an}满足:a(n+1)=1/2an-3,a1=1,且liman存在,则liman=_____【括号内为下标】

a(n+1) = (1/2)an - 3
2a(n+1) = an - 6
∵ an 的极限存在,当n→∞时, lima(n+1) = liman, 设liman = A
∴ lim[1/2an - 3] = liman = A = 1/2 A - 3
∴ A = - 6

设极限为x,a(n+1)=1/2an-3两边取极限得:x=1/2x-3
x=-6