正弦定理判断三角形形状第一题:三角形中,若tanA:tanB=a平方:b平方 试判断三角形形状第二题:三角形中,若sinA=2sinBcosC 且sinA的平方=sinB的平方+sinC的平方 判断三角形的形状

问题描述:

正弦定理判断三角形形状
第一题:三角形中,若tanA:tanB=a平方:b平方 试判断三角形形状
第二题:三角形中,若sinA=2sinBcosC 且sinA的平方=sinB的平方+sinC的平方 判断三角形的形状

tanA/tanB=sinAcosB/sinBcosA=a^2/b^2=sin^2A/sin^2B
等式两端消去相同项,得sinBcosB=sinAcosA,即2sinBcosB=2sinAcosA,即sin2A=sin2B,即2A+2B=pai,即A+B=pai/2,故三角形为直角三角形
由sinA=2sinBcosC得a=2b*(a^2+b^2-c^2)/2ab化简得b=c,再由sin^2A=sin^2B+sin^2C得a^2=b^2+c^2,从而三角形为等腰直角三角形