答
(1)令x=y=0,则f(0)=0
令y=-x,则f(0)=f(x)+f(-x)=0
∴y=f(x)为奇函数.
任取x1<x2,则x2-x1>0.f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)
∵x2-x1>0∴f(x2-x1)>0
∴f(x2)>f(x1)
∴y=f(x)在R上增函数
(2)∵f(2)=3
∴6=f(2)+f(2)=f(4)
∴f(|x-5|)-6<f(|2x+3|)
∴f(|x-5|-|2x+3|)<f(4)
∴|x-5|-|2x+3|<4
∴⇒x≥5
或⇒x<−4
或⇒−<x<5
综上知,x>−或x<−4.
答案解析:(1)令x=y=0,求出f(0),再令y=-x,即可判断出奇偶性;利用函数单调性的定义,设任意x1,x2∈R且x1<x2,结合已知不等式比较f(x1)和f(x2)的大小,即可判断出单调性.(2)根据f(2)=3,可求6=f(2)+f(2)=f(4),所以不等式可化为:f(|x-5|-|2x+3|)<f(4),利用函数的单调性得|x-5|-|2x+3|<4,利用零点分段,从而可解不等式.
考试点:函数单调性的判断与证明;函数奇偶性的判断.
知识点:本题以函数的性质为载体,考查抽象函数的奇偶性和单调性的判断和应用:解不等式,及分类讨论思想,综合性强,难度较大.