求函数y=sin(2x+π/6)在x∈(π/6,π/3)时的单调区间的值域

问题描述:

求函数y=sin(2x+π/6)在x∈(π/6,π/3)时的单调区间的值域

∵x∈(π/6,π/3)
∴π/2<2x+π/6<5π/6
而y=sinx在(π,5π/6)上是单调递减的
所以y=sin(2x+π/6)在x∈(π/6,π/3)时是单调递减的
ymax<sinπ/2=1
ymin>sin5π/6=sinπ/6=1/2
∴值域为(1/2,1)
明教为您解答,
请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!