设数列{an}的前n 项和为Sn,对于任意的正整数n,都有an=5Sn+1成立,设bn=(4+an)/(1-an)(n∈N+)
问题描述:
设数列{an}的前n 项和为Sn,对于任意的正整数n,都有an=5Sn+1成立,设bn=(4+an)/(1-an)(n∈N+)
(1)求数列{an}与数列{bn}的通项公式
(2)设数列(bn)的前n项和为Rn,求证:对任意正整数K,都有Rn(3)记Cn=b(2n)-b(2n-1),(n∈N+),设数列{cn}的前n项和为Tn,求证:对任意整数n,都有Tn
数学人气:274 ℃时间:2020-04-05 19:01:19
优质解答
首先a1=5a1+1求得a1 ,an-1=5Sn-1+1 与an=5Sn+1联立 得4an=-an-1 所以an是等比数列 就意思意思吧,以你的智商做出剩下的很容易的.
我来回答
类似推荐
- 数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,记bn=(4+an)/(1-an)(n是正整数)
- 设数列an的前n项和为sn,对任意的正整数n,都有an=5sn+1成立,记bn=(4+an)/(1-an)(n是正整数)
- 已知数列{an}的前n项和为sn,且sn=2n^2+n,n是正整数,又an=4log(2)bn+3
- 已知数列{an}的前n项和为Sn,且对任意的n∈N*有an+Sn=n. (1)设bn=an-1,求证:数列{bn}是等比数列; (2)设c1=a1且cn=an-an-1(n≥2),求{cn}的通项公式.
- 数列{an}的前n项和为Sn,对任意的正整数n,都有an=5Sn+1成立,记bn=(4+an)/(1-an)(n是正整数) 100 -
答
首先a1=5a1+1求得a1 ,an-1=5Sn-1+1 与an=5Sn+1联立 得4an=-an-1 所以an是等比数列 就意思意思吧,以你的智商做出剩下的很容易的.