已知数列{log2(an-1)}(n属于N*)为等差数列,且a1=3,a3=9

问题描述:

已知数列{log2(an-1)}(n属于N*)为等差数列,且a1=3,a3=9
(1)求数列的{an}的通项公式
(2)Sn=1/(a2-a1)+1/(a3-a2)+……+1/(a(n-1)-an),求Sn

(1)
log2(a1-1)-log2(a3-1)=-2d
log2(8)-log2(2)=2d
d=1
log2(an-1)=n
an=2^n+1 (n属于N*)
(2)1/(an-a(n-1))=1/(2^(n-1)) *(题这里应该抄错了)
所以{1/(a(n-1)-an)}是以1/2为首项,1/2为公比的等比数列
Sn=(1-(1/2)^(n-1)) (n大于等于2)