设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:(Ⅰ)ac的值;(Ⅱ)cotB+cot C的值.

问题描述:

设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:
(Ⅰ)

a
c
的值;
(Ⅱ)cotB+cot C的值.

(Ⅰ)由余弦定理得a2=b2+c2-2bccosA=(

1
3
c)2+c2-2•
1
3
c•c•
1
2
=
7
9
c2
a
c
=
7
3

(Ⅱ)cotB+cotC=
cosBsinC+cosCsinB
sinBsinC
=
sin(B+C)
sinBsinC
=
sinA
sinBsinC

由正弦定理和(Ⅰ)的结论得
sinA
sinBsinC
=
1
sinA
a2
bc
=
2
3
7
9
c2
1
3
c⋅c
=
14
3
3
=
14
3
9

cotB+cotC=
14
3
9