求不定积分∫[sinxcosx/(sinx+cosx)]dx

问题描述:

求不定积分∫[sinxcosx/(sinx+cosx)]dx

=(tan(x/2) - 1)/(tan(x/2)^2 + 1) + (2^(1/2)*arctan((12*2^(1/2)*tan(x/2)*i + 4*2^(1/2)*i)/(16*tan(x/2) + 8))*i)/2+C
这是matlab命令求出的结果,我也不知道中间的过程

换元,令u=tan(x/2),则由三角函数的万能公式,sinx 和 cosx 都能写成u的形式 ,那么原积分可以化成有理函数的积分,然后再考虑真分式拆分之类的

∫cosx/(sinx+cosx) dx = (1/2)∫[(cosx+sinx)+(cosx-sinx)]/(sinx+cos)] dx = (1/2)∫ dx + (1/2)∫(cosx-sinx)/(sinx+cosx) dx

∫[sinxcosx/(sinx+cosx)]dx
=∫1/2sin(2x)(cosx-sinx)/cos(2x)dx
=2^0.5/4∫tan(2x)cos(x+Pi/4)dx
=2^0.5/4∫tan(2x)dsin(x+Pi/4)
=2^0.5/4 tan(2x)sin(x+Pi/4)-∫sin(x+Pi/4)dtan(2x)
=...

∫[sinxcosx/(sinx+cosx)]dx=-1/4∫[dcos2x/(sinx+cosx)]=-1/4cos2x/(sinx+cosx)-1/4/∫[cos2x*(cosx-sinx)/(sinx+cosx)^2dx=-1/4cos2x/(sinx+cosx)-1/4∫[(cosx-sinx)^2/(sinx+cosx)]dx=-1/4cos2x/(sinx+cosx)-1/4...