已知函数f ( x )=−acos2x−23asinxcosx+2a+b的定义域为[0 , π2],值域为[-5,1],求常数a,b的值.
问题描述:
已知函数f ( x )=−acos2x−2
asinxcosx+2a+b的定义域为[0 ,
3
],值域为[-5,1],求常数a,b的值. π 2
答
∵f ( x )=-acos2x-23asinxcosx+2a+b=-acos2x-3asin2x+2a+b=-2asin(π6+2x)+2a+b,又∵0≤x≤π2,∴π6≤π6+2x≤7π6,-12≤sin(π6+2x)≤1,当a>0时,∵-2a≤-2asin(π6+2x)≤a,∴-2a+...