过y^2=2px(x>0)上一点P(x0,y0)(y0>0)作两直线分别交抛物线于A(X1,Y1)B(X2,Y2)

问题描述:

过y^2=2px(x>0)上一点P(x0,y0)(y0>0)作两直线分别交抛物线于A(X1,Y1)B(X2,Y2)
1)求抛物线上纵坐标为0.5p的点到其焦点F的距离2)当PA、PB斜率存在且倾斜角互补时求(y1+y2)/y0的值,并证明直线AB的斜率是非零常数
(在下午3点以前就要,要详解,可以在给答案以后提高悬赏!)

1)焦点F(p/2,0),y0=p/2时x0=p/8,由抛物线定义,|PF|=x0+p/2=5p/8.2)当PA、PB斜率存在且倾斜角互补时,PAx=m(y-y0)+y0^2/(2p),PB:x=-m(y-y0)+y0^2/(2p).分别代入y^2=2px,①得y^2-2mpy+2mpy0-y0^2=0,y1=2mp-y0;②y^2+2...