抛物线y=-(x-L)(x-3-k)+L与抛物线y=(x-3)2+4关于原点对称,则L+k=_.
问题描述:
抛物线y=-(x-L)(x-3-k)+L与抛物线y=(x-3)2+4关于原点对称,则L+k=______.
答
整理抛物线y=-(x-L)(x-3-k)+L,得:y=-x2+(3+k+L)x-2L-Lk;
整理抛物线y=(x-3)2+4得y=x2-6x+13.
∵两抛物线关于原点对称,
∴y=(x-3)2+4关于原点对称的函数的解析式是Ly=-(x+3)2-4,即y=-x2-6x-13.
∴3+k+L=-6
那么k+L=-9.
故答案是:-9.