已知a,b,c属于正实数,a+b+c=1,求(1/a-1)(1/b-1)(1/c-1)大于等于8

问题描述:

已知a,b,c属于正实数,a+b+c=1,求(1/a-1)(1/b-1)(1/c-1)大于等于8

证明:∵ a+b+c=1∴ (1/a-1)(1/b-1)(1/c-1)=[(a+b+c)/a-1]*[(a+b+c)/b-1]*[(a+b+c)/c-1]=(b/a+c/a)*(a/b+c/b)*(a/c+b/c)≥2√(bc/a²)* 2√(ac/b²) *2√(ab/c²)=8∴ (1/a-1)(1/b-1)(1/c-1)大...