(dy/dx)sin x=yln y的通解

问题描述:

(dy/dx)sin x=yln y的通解

∫1/y*1/lny dy=∫1/sinx dx
lnlny=∫1/2/[sin(x/2)*cos(x/2)] dx
lnlny=ln(sin(x/2))-ln(cos(x/2))+c
lny=e^c*tan(x/2)这里e^c写作C,因为毕竟还是常数.
y=e^(C*tan(x/2))