已知方程(2x-7)/(x-1)+(a^2-2a-8)/(x^2-3x+2)=(2x-a^2+a-7)/(x-2),当a为何值时,方程有实数根?
问题描述:
已知方程(2x-7)/(x-1)+(a^2-2a-8)/(x^2-3x+2)=(2x-a^2+a-7)/(x-2),当a为何值时,方程有实数根?
如题,THX~
答
原等式可变化为:
(2x-7)/(x-1) - (2x-a^2+a-7)/(x-2)+(a^2-2a-8)/(x^2-3x+2) = 0
==> [(2x-7)(x-2)- (2x-a^2+a-7)(x-1)]/[(x-1)(x-2)]+(a^2-2a-8)/[(x-1)(x-2)] = 0
==> [(a^2-a-2)x - (a+1)]/[(x-1)(x-2)] = 0
==> (a+1)[(a-2)x-1]/(x-1)(x-2) =0;
显然:
(1) a=-1 时,只要x≠1 x≠2,等式即成立,方程有无穷多实根;
(2) (a-2)x -1 = x-1 时,a=3,方程化为:
4/(x-2) =0,方程无解;
(3) (a-2)x-1 = k(x-2)时[k为非零常数],a=5/2,方程化为:
7/(2x-2)= 0,方程无解;
(4) a≠1,a≠3,a≠5/2,时,方程有唯一实数解;
综上所述:
当a 为 ≠3且≠5/2的实数 时,方程有实数根.