x=√2+√3,x^8+1=x^4(6y+16) 求y

问题描述:

x=√2+√3,x^8+1=x^4(6y+16) 求y

x^8+1=x^4(6y+16)
得6y+16
=(x^8+1)/x^4
=x^4+1/x^4
=(x^2+1/x^2)^2-2x^2
=(√2+√3)^2
=5+2√6 ;
1/x^2
=5-2√6
故6y+16
=(5+2√6+5-2√6)^2-2
=98,
y=(98-16)/6
=41/3