1×(1/3)+3×(1/5)+5×(1/7)+...+99×(1/101)=多少?

问题描述:

1×(1/3)+3×(1/5)+5×(1/7)+...+99×(1/101)=多少?

1×(1/3)+3×(1/5)+5×(1/7)+...+99×(1/101)
=1-2/3+1-2/5+1-2/7+.+1-2/101
=50-2*(1/3+1/5+1/7+...1/101)
=50-2*1.9477
=46.1046