高数!设f(x)=(1+x分之一)的x次方,求f'(1),
问题描述:
高数!设f(x)=(1+x分之一)的x次方,求f'(1),
答
f(x)=(1+1/x)^x=e^(x*ln(1+1/x))=e^(x*ln(x+1)-x*lnx)f'(x)=e^(x*ln(x+1)-x*lnx) *(ln(x+1)+x/(x+1)-lnx-1)=(1+1/x)^x *(ln(x+1)-lnx-1/(x+1))f'(1)=(1+1/1)^1 *(ln(1+1)-ln1-1/(1+1))=2ln2-1