求解:1+(1+2)+(1+2+3).(1+2+3+.+9998+9999++++++++++10000)
问题描述:
求解:1+(1+2)+(1+2+3).(1+2+3+.+9998+9999++++++++++10000)
答
An=n
An的和Sn=1+2+..n=n(n+1)/2
Bn=Sn=n(n+1)/2 =(n^2+n)/2
Bn的和Tn=[n(n+1)(2n+1)/6+n(n+1)/2]/2=n(n+1)(5n+4)/12
附:1^2+2^2+3^2+...n^2 = n(n+1)(2n+1)/6
把10000代入得Tn=416741670000什么意思?哪不懂?写的很清楚啊看不懂A1=1, A2=1+2, A3=1+2+3,.....An=1+2+3+...n通项公式An=(n^2+n)/2即求A1+A2+A3+....A10000而An的前n项的和Tn= =[n(n+1)(2n+1)/6+n(n+1)/2]/2= n(n+1)(5n+4)/12 因为: 1^2+2^2+3^2+...n^2 = n(n+1)(2n+1)/6 , 1+2+3+...n=n(n+1)/2把10000代入得Tn=416741670000