函数y=sinx+3cosx+2cos2x+3sin2x的值域为 _ .
问题描述:
函数y=sinx+
cosx+2cos2x+
3
sin2x的值域为 ___ .
3
答
y=sinx+
cosx+2cos2x+
3
sin2x
3
=2sin(x+
)+1+cos2x+π 3
sin2x
3
=2sin(x+
)-2cos(2x+π 3
)+12π 3
=2sin(x+
)-2(1-2sin2(x+π 3
)+1π 3
=4sin2(x+
)+2sin(x+π 3
)-1π 3
令t=sin(x+
),π 3
∵sin(x+
)∈[-1,1]π 3
∴t∈[-1,1]
∴y=4t2+2t-1,t∈[-1,1]
当t=-
时,ymin=-1 4
;5 4
当t=1时,ymax=5.
所以函数的值域为[-
,5].5 4
故答案为:[-
,5].5 4