(1)已知双曲线C:x2/a2-y2/b2=1 的右准线交X轴于A点,双曲线虚轴的下端点为B,过双曲线的右焦点F(C,0)作垂直于X轴的直线交双曲线于点P(P在第一象限)若点D满足2OD(向量)=OF(向量)+OP(向量) 且ABD共线

问题描述:

(1)已知双曲线C:x2/a2-y2/b2=1 的右准线交X轴于A点,双曲线虚轴的下端点为B,过双曲线的右焦点F(C,0)作垂直于X轴的直线交双曲线于点P(P在第一象限)若点D满足2OD(向量)=OF(向量)+OP(向量) 且ABD共线
(1)求双曲线的离心率 (2)若a等于2,过点B的直线交双曲线于MN两点,问Y轴上是否存在定点G是的GM*GN(向量点积)为常数?
第一问我算的离心率是二分之根号5 但是第二问就不会了~
(2)an=n+3 数列{bn},若bn>an (n大于等于2,n是正整数) 求证(1+1/b2b3)(1+1/b3b4)……(1+1/bnb(n+1))

说说思路和简要步骤:第一题:求得双曲线方程为x^2/4-y^2=1B(0,-1) 设过B的直线方程为:y=kx-1跟双曲线联立可得(1-4k^2)x^2+8kx-8=0 设M(x1,y1) N(x2,y2) G(0,t)于是GM*GN(向量点积)=(x1,y1-t)(x2,y2-t)=(x1,kx1...