在△ABC中,已知∠CAB=60°,D,E分别是边AB,AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB=( ) A.15° B.20° C.25° D.30°
问题描述:
在△ABC中,已知∠CAB=60°,D,E分别是边AB,AC上的点,且∠AED=60°,ED+DB=CE,∠CDB=2∠CDE,则∠DCB=( )
A. 15°
B. 20°
C. 25°
D. 30°
答
∠CAB=60°,∠AED=60°,
∴△ADE是正三角形.
作BF∥DE交AC于F,
∴△ABF∽△ADE,
∴△ABF是等边三角形,
则BD=EF,
从而EC=DE+BD=AB=BF,DE=FC,
又∠1=∠2=120°,
∴△EDC≌△FCB,
∴θ+x=φ;
∵∠CDB=2φ,∠BDE=120°,
∴φ=40°,
θ+x=40°;
∵θ+φ=θ+40°=60°
∴θ=20°,
得:x=20°.
故选B.