设级数∑An收敛,且lim(nAn)=a,证明∑n(An-A(n+1))收敛

问题描述:

设级数∑An收敛,且lim(nAn)=a,证明∑n(An-A(n+1))收敛

马上写来设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+1)-[A2+A3+.....+A(n+1)]limSn=lim{A1-(n+1)A(n+1)-[A2+A3+.....+A(n+1)]}=A1-a+A1-b即级数∑n(An-A(n+1))收敛