问题描述:
在Rt△ABC中,AB=AC,∠A=90°,D为BC边上任意一点,DE⊥AB于点E,F为AC上一点.且AF=ED,M为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.
答
△MEF是等腰直角三角形.理由:连接AM.因为 △ABC是Rt△,且∠A=90°,AB=AC所以 ∠B=∠C=45°,AM⊥BC,BM=CM=AM,AM平分∠BAC,即 ∠CAM=∠B=45°又因为 AF=ED=BE,所以 △BFM≌△AEM.所以 FM=EM,∠BME=∠AMF因 ∠BME+∠AME=90°,所以 ∠AME+∠AMF=∠EMF=90°故 △MEF是等腰直角三角形