关于矩阵复数域上的证明,会追加1-2倍的分

问题描述:

关于矩阵复数域上的证明,会追加1-2倍的分
设A是复数域上一n阶矩阵.证明:
1) A相似于一矩阵形如:
λ1c12c13...c1n
0λ2c23...c2n
00λ3...c3n
... ... ... ......
000...λn
2)A在复数域中有n个特征根(重根计重数),并且,如果λ1,λ2,...,λn是其全部特征根,f(x)是复数域上任意多项式,则f(λ1),f(λ2),...,f(λn)是f(A)的全部特征根.

1.A可化为Jordan形矩阵,再把每个根子空间的基的顺序倒转即可.
2.由代数基本定理知A有n个特征根.另一方面,把A化成Jordan形矩阵,则f(A)是下三角矩阵,它的对角元为f(λ1),f(λ2),...,f(λn),所以f(λ1),f(λ2),...,f(λn)为f(A)的全部特征根.