如图,ABc的两个外角角cBD,角BcE的平分线相交于o,如果AB平行co,试探索角AcB和角Boc之

问题描述:

如图,ABc的两个外角角cBD,角BcE的平分线相交于o,如果AB平行co,试探索角AcB和角Boc之


设∠ACB=∠1,∠BOC=∠2,∠BCO=x
∵AB∥OC,BO平分∠CBD
∴∠2=∠OBD=∠OBC
在△BOC中可得
2∠2+x=180°.①
∵CO平分∠BCE
∴∠1+2x=180°.②
由①②可得
4∠2-∠1=180°
即4∠BOC-∠ACB=180°