已知cosa=1/7,cos(a-b)=13/14,且0<b<a<派/2.求b

问题描述:

已知cosa=1/7,cos(a-b)=13/14,且0<b<a<派/2.求b

0<b<a<π/20<a-b<π/2cosa=1/7,sina=√(1-(1/7)^2)=4√3/7cos(a-b)=13/14,sin(a0b)=√(1-(13/14)^2)=3√3/14sinb=sin[a-(a-b)] = sinacos(a-b)-cosasin(a-b)= 4√3/7*13/14-1/7*3√3/14= (52√3-3√3)/98= √3/...sin(a0b)=√(1-(13/14)^2)=3√3/14这一步是?sin(a-b)=√(1-(13/14)^2)=3√3/14