已知cos(π/4-a)=3/5,sin(5π/4+B)=-12/13,a∈(π/4,3/4π),B∈(0,π/4),求sin(a-B)的值

问题描述:

已知cos(π/4-a)=3/5,sin(5π/4+B)=-12/13,a∈(π/4,3/4π),B∈(0,π/4),求sin(a-B)的值

已知cos(π/4-a)=3/5,sin(5π/4+B)=-12/13,a∈(π/4,3/4π),B∈(0,π/4),则
π/4-a∈(-π/2,0),
sin(π/4-a)=-4/5
5π/4+B∈(5π/4,3π/2),
cos(5π/4+B)=-5/13
sin(a-B)=cos(π/2-a+B)=-cos(3π/2-a+B)=-cos[(π/4-a)+(5π/4+B)]=-[cos(π/4-a)cos(5π/4+B)-sin(π/4-a)sin(5π/4+B)]=-[(3/5)*(-5/13)-(-4/5)*(-12/13)]=63/65